

MODULE SPECIFICATION

Module Title:		UAV Sensor Technology		Leve	el:	6		Creo Valu		20		
Module code: ENG689		ENG689	Is this a new YES module?		Code of module being replaced:							
Cost Centre: GAME		JACS3 code:		H430								
Trimester(s) in which to be 1, 2			With effect Septemb			embe	r 17					
School:		ied Science, Com neering	nputing &	Module Leader: R.Bolam								
Scheduled	Scheduled learning and teaching hours 60 hrs											
Guided independent study			140 hrs									
Placement				0 hrs								
Module duration (total hours)				200 hrs								
Program	ne(s)	in which to be o	ffered							Core	e Option	1
BEng (Hons) Drone Technology and Operations												
BEng (Hons) Optoelectronics & Holography										✓		
BEng (Hons) Aerospace and Modern Optics												
Pre-requisites												
None												
Office use or	nly											

,		
Initial approval February 17		
APSC approval of modification	Version 1	
Have any derogations received Academic Board approval?	Yes ✓ No 🗆	

Module Aims

To support the development of the student in the following areas:

- To gain a knowledge of flight control and payload / mission sensor technology at a conceptual and working level.
- To be able to specify and select a suitable sensor technology and sub-system components suitable to a particular UAV mission application.
- To gain a knowledge of optical metrology, photogrammetry and 3D imaging techniques in the context of UAV operations.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	the end of this module, students will be able to	Key Skills		
1	Demonstrate an in-depth knowledge of flight control and payload / mission sensor technology at a conceptual and	KS1	KS5	
	working level	KS6		
2	Specify and select a suitable sensor technology and sub- system components suitable to a particular UAV mission	KS1	KS4	
2	application	KS5		
3	Explain the concepts and do calculations relating to coherence, Lasers, IR and UV sensors and ultra-sonic	KS1	KS3	
	transducer technologies	KS10		
4	Explain the concepts and do calculations relating to digital	KS3	KS6	
4	images. Time-of-Flight imaging and stereo vision systems for depth perception and 3D imaging	KS9	KS10	

Derogations

A derogation from regulations has been approved for this programme which means that whilst the pass mark is 40% overall, each element of assessment (where there is more than one assessment) requires a minimum mark of 30%.

Assessment:							
 Assessment 1: A 2 hour formal examination including calculations, covering learning outcomes 1, 3, 4. Assessment 2: An essay based on sensor technology and sub-system components suitable to a particular UAV mission application, covering learning outcome 2. 							
Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)		
1	1,3,4	Examination	60	2 Hours			
2	2	Essay	40		2,000		

Learning and Teaching Strategies:

This module will be delivered as a series of lectures, and laboratory demonstrations. The student will also be required to undertake significant reading of metrology and sensor technology materials.

Syllabus outline:

Flight Control Sensors

The measurement of altitude, airspeed and ground speed using pitot-static sensors, radio transmissions and GPS. Inertial Measurement Units (IMU), magnetometers and Micro-Electro-Mechanical Systems (MEMS) technology. Limitations and comparisons of GPS and locally sensed positional data. Controlling positional path accuracy in waypoint flying. FPV flying, The concept of digital images. Time-of-Flight imaging and stereo vision systems for depth perception and 3D imaging. Use of telemetry for UAV systems and the integration of control and payload / mission data systems.

Payload / Mission Sensors

Data capture, logging and transmission systems. The electromagnetic spectrum, the concept of coherence, Lasers, IR and UV sensors and ultra-sonic transducer technologies. Optical measurement techniques: photography, holography, TV holography, Interferometry, LIDAR systems, LASER triangulation and commercially available 3D imaging software.

MODULE SPECIFICATION

Bibliography:

Essential reading

Zhang,S. (2013) Handbook of 3D Machine Vision: Optical Metrology and Imaging (Series in Optics and Optoelectronics).CRC Press.

Other indicative reading

Gonzalez, R.C. Woods, R.E. (2008) *Digital Image processing*, 3rd *Edition*. Pearson.